Non-invasive in vivo imaging in small animal research

V. Koo, P.W. Hamilton and K. Williamson

Abstract. Non-invasive real time in vivo molecular imaging in small animal models has become the essential bridge between in vitro data and their translation into clinical applications. The tremendous development and technological progress, such as in tumour modelling, monitoring of tumour growth and detection of metastasis, has facilitated translational drug development. This has added to our knowledge on carcinogenesis. The modalities that are commonly used include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images longitudinally provides reliable information whilst reducing animal numbers. As yet there is no one modality that is ideal for all experimental studies. This review outlines the instrumentation available together with corresponding applications reported in the literature with particular emphasis on cancer research. Advantages and limitations to current imaging technology are discussed and the issues concerning small animal care during imaging are highlighted.

Keywords: Animal model, non-invasive, in vivo, imaging, CT, PET, MRI, bioluminescence, fluorescence

1. Introduction

In vivo molecular imaging in animals is an expanding discipline in biomedical research in the current post-genomic era. The driving force comes from the advancement in molecular and cellular techniques, the increased numbers of animal models and the development of novel imaging probes with complementary imaging systems. Non-invasive in vivo imaging is a major advantage over conventional cytology/histology microscopy techniques, which involve chemical fixation of removed tissues from which it can be difficult to generate quantitative data [41].

It is now possible to develop non-invasive in vivo imaging of specific molecular and cellular mechanisms; to simultaneously monitor multiple molecular events; to track specific molecular targets; to optimise drug and gene therapy; to visualise drug effects at the molecular and cellular level; and to assess disease progression [33]. In vivo imaging in animal models has facilitated the study of thresholds, complementation and redundancy within biological pathways [19] as well as the visualisation of the temporal and spatial biodistribution of the molecular probe and its related biological pathways.

Furthermore, longitudinal imaging of the same animal model using bio-imaging assays at multiple time-points can achieve more valuable information than would be obtained from multiple individual animals. In these systems the animal acts as its own control and the dynamic data charts the progressive visual biological changes and therapeutic response without the sacrifice of a large number of experimental animals. Tumour xenografts grown subcutaneously or orthotopically in nude mice and syngeneic mice and rat models can now be used to investigate the effects of novel therapeutics. This approach has been harnessed to monitor tumour growth and metastasis in prostate [63] and breast [40]; to chart the development of lung cancer and to plot colon tumour regression following mitomycin c and 5-FU therapy [25].

2. Imaging techniques

There has been considerable progress in the development of non-invasive small animal in vivo imaging...
Table 1
Features of the most common imaging techniques (modified from Lyons, 2005 [32])

<table>
<thead>
<tr>
<th>Modality</th>
<th>Basis</th>
<th>Resolution</th>
<th>Acquisition time</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET</td>
<td>High energy γ-rays</td>
<td>1–2 mm</td>
<td>mins</td>
<td>High sensitivity</td>
<td>Cyclotron required to generate short-lived radioisotope</td>
</tr>
<tr>
<td>SPECT</td>
<td>Low energy γ-rays</td>
<td>1–2 mm</td>
<td>mins</td>
<td>High sensitivity</td>
<td>Radiation to animal</td>
</tr>
<tr>
<td>MRI</td>
<td>Radiowaves</td>
<td>25 to 100 μm</td>
<td>mins to hours</td>
<td>Highest spatial resolution</td>
<td>Low sensitivity</td>
</tr>
<tr>
<td>CT</td>
<td>X-rays + contrast</td>
<td>50 μm</td>
<td>mins</td>
<td>Good anatomical resolution</td>
<td>Relatively poor soft-tissue contrast</td>
</tr>
<tr>
<td>Fluorescence imaging</td>
<td>Visible and near-infrared light</td>
<td>1 to 10 mm</td>
<td>secs to mins</td>
<td>High sensitivity</td>
<td>Prone to attenuation with increased tissue depth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No radiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Probes with emission wavelength <600 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>prone to autofluorescence</td>
</tr>
<tr>
<td>Bioluminescence imaging</td>
<td>Visible light</td>
<td>1 to 10 mm</td>
<td>mins</td>
<td>High sensitivity</td>
<td>Low anatomic resolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No radiation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Light emission prone to attenuation with increased tissue depth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Provides relative measure of cell viability or function</td>
</tr>
</tbody>
</table>

The body. As the relatively low X-ray photon-energy source of 25–50 keV is used, a high resolution/CCD detector system rotates around the body of the animal to capture images. A typical scan of an entire mouse at a resolution of 100 μm would take about 15 minutes. Higher spatial resolution would require a longer period of scanning.

In order for CT to have molecular imaging ability, specific CT probes (probably of iodine-based or barium-based for X-ray contrast), similar to PET, have been designed and used concurrently with CT scanning. Unfortunately the use of contrast agent produces an ionisation effect that results in radiation damage via superoxides and free radicals. Since the sensitivity and spatial resolution is also dependent on the duration of
CT exposure and amount of contrast agent used, the radiation dose from a CT ultimately limits the repeated imaging of the same animal.

Unlike clinical CT scanners which use X-ray photon energy greater than 50 keV, animal scanners use lower energy which desirably results in up to $20 \times$ higher X-ray attenuation, thus allowing superior soft tissue discrimination in comparison to its clinical equivalent. Unfortunately, the overall poor soft tissue contrast still necessitates the use of iodinated contrast to delineate the internal organs of the animal. CT has been employed in non-invasive in vivo imaging to monitor colonic tumour growth (Fig. 1), to investigate bone regeneration and to detect of tumours (Table 2).

3. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT)

PET imaging relies on probes/tracers known as isotopes that can be administered to the subjects to generate an identifiable image. The underlying principle is that PET isotopes emit β^+ radiation (positrons) over time. Each positron undergoes an annihilation reaction with an electron which results in the generation of two.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Probe/contrast agent</th>
<th>Target tissue/cells</th>
<th>Animal model</th>
<th>Instruments and software</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weber et al., 2004 [58]</td>
<td>ITG (1,3-bis [7-(3-amino-2,4,6-triiodophenyl)heptanoyl]-2-oleoyl-glycerol)</td>
<td>Liver tumours generated from injection of syngeneic CT26 cells</td>
<td>Murine hepatic tumour model using male BALB/c mice</td>
<td>MicroCT scanner (Micro-CAT I, Imtek, Knoxville, TN)</td>
<td>Monitoring of liver tumour dimensions</td>
</tr>
<tr>
<td>Gauthier et al., 2005 [20]</td>
<td>–</td>
<td>Bone</td>
<td>Model of bone regeneration in female New Zealand White rabbits (3–3.5 kg)</td>
<td>MicroCT (μCT 20, Scanco Medical AG, Bassersdorf, Switzerland)</td>
<td>Monitoring of new bone formation</td>
</tr>
<tr>
<td>Pickhardt et al., 2004 [43]</td>
<td>–</td>
<td>Colorectal murine tumour</td>
<td>C57BL/6J mice</td>
<td>MicroCT scanner (Micro-CAT I, Imtek, Knoxville, TN)</td>
<td>Detection of colonic polyp in 3D</td>
</tr>
<tr>
<td>Thrailkill et al., 2005 [54]</td>
<td>–</td>
<td>Bone</td>
<td>Female non-obese diabetic mice</td>
<td>MicroCT-40 (Scano, Bassersdorff, Switzerland) and the manufacturer’s software</td>
<td>Measurement of de novo bone formation during tibial distraction osteogenesis</td>
</tr>
</tbody>
</table>
ical process. Another advantage is that repeated imag-
processes can be imaged without disturbing the biolog-
tions or less and therefore very low, certain biological
isotope probes required are in nanomolar concentra-
tions and ways and processes [11]. Because the amounts of
sors and image processing units [68].

into visible light, which in turn is detected by light sen-
tors and this results in a
emitters in single direction. This necessitates differ-
ent instrumentation for detection and this results in a
limitation to the detection efficiency (to around 10^{-4}
of number of γ-rays) of SPECT. Typically used iso-
topes include 123-iodine (^{123}I) and 99m-technetium
(^{99m}Tc).

Applications of PET have included the imaging of
 xenograft models of brain, breast and ovarian tumours
through exploitation of the arginine–glycine–aspartate
(RGD) motif interaction with integrin receptor sites.
RGD-labelled with α3β3 integrin antagonist tracer
have been used to demonstrate imaging of receptor-
specific accumulation in mouse breast tumour model
shown in Fig. 2. PET has also been employed to visu-
alise endothelial receptors (Table 3).

In the past, PET was only used for larger animals,
but with the incorporation of better technology and
improved imaging resolution, small animal imaging is
now possible. The major limitations of PET are its
spatial resolution and image noise. Spatial resolution
of PET scans is typically about 2 \text{ mm}^3 [13]. Newer
generation scanners can achieve a resolution of about
1 \text{ mm}^3 [10] and have a relatively high sensitivity
approximately 10^{-11} to 10^{-12} \text{ mole/l}.

3.1. Magnetic Resonance Imaging (MRI)

MRI uses a large magnet to generate a magnetic field
around the subject. The magnetic field causes hydro-
gen atoms to align themselves in water and organic
compounds, creating what is known as a magnetic di-
pole. The specific radiofrequency (RF) coils inside the
bore of the magnet generate a temporary RF pulse, ca-
ble of changing the alignment of these dipoles. Once
the pulse ceases, the dipoles return or ‘relax’ to their
normal baseline alignment. The relaxation behaviour
of the dipoles is described by both T1 and T2 relax-
ation. Both parameters are different for different tis-
ues resulting in contrast in MRI imaging. Depending
on the timing of sequence the contrast can be predom-
antly T1- or T2-weighted.

Modified techniques of MRI extend the capabil-
ity to obtain further functional information and will
probably be available for small animal imaging in the
future. Diffusion-weighted imaging uses the changes
in mobility of water molecules to obtain information
on microscopic tissue characteristics [21]. Perfusion-
Table 3
Summary of PET and SPECT application and instrumentation

<table>
<thead>
<tr>
<th>Authors</th>
<th>Probe/contrast agent</th>
<th>Target tissue/cells</th>
<th>Animal model</th>
<th>Instruments and software</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu et al., 2005 [64]</td>
<td>64Cu-radiolabeled tetrameric RGD</td>
<td>U87/MG brain glioma</td>
<td>Xenograft model in female athymic nude mice</td>
<td>MicroPET R4 scanner (Concorde Microsystems Inc, USA)</td>
<td>Target $\alpha_v\beta_3$ integrin in tumour cells</td>
</tr>
<tr>
<td>Johnström et al., 2005 [26]</td>
<td>18F-endothelin-1</td>
<td>Endothelin receptors in rat lung, liver and kidney</td>
<td>Male Sprague-Dawley rat</td>
<td>MicroPET P4 scanner (Concorde Microsystems, Knoxville, USA)</td>
<td>Visualising endothelin receptors in various organs</td>
</tr>
<tr>
<td>Olafsen et al., 2005 [38]</td>
<td>111In-DOTA 10H8 minibody and antibody, 111In-MX-DTPA trastuzumab</td>
<td>Breast tumour MCF7/HER2</td>
<td>Xenograft model in female nude mice</td>
<td>MicroPET P4 scanner (Concorde Microsystems, Knoxville, USA)</td>
<td>Antibody-based targeted delivery of radioisotopes to tumour cells</td>
</tr>
<tr>
<td>Chen et al., 2004 [12]</td>
<td>64Cu- radiolabeled dimeric RGD</td>
<td>MDA-MB-435 breast carcinoma</td>
<td>Xenograft model in female athymic nude mice</td>
<td>MicroPET R4 scanner (Concorde Microsystems, Knoxville, TN)</td>
<td>Target $\alpha_v\beta_3$ integrin in tumour cells</td>
</tr>
<tr>
<td>Janssen et al., 2002 [24]</td>
<td>111In- and 99mTc-radiolabeled dimeric RGD peptides 90Y RGD peptide</td>
<td>NIH:OVCAR-3 ovarian carcinoma</td>
<td>XenoGRAFT model in female nude BALB/c mice</td>
<td>SPECT: Single head gamma camera, parallel hole medium energy collimator (Siemens Orbiter, Siemens, Inc., Hoffman Estate, IL)</td>
<td>Target $\alpha_v\beta_3$ integrin in tumour cells</td>
</tr>
</tbody>
</table>

RGD – small peptides containing the Arg–Gly–Asp amino acid sequence.

Fig. 3. MR T1-weighted images of control EMT-6 (which do not express HER-2/neu) and NT-5 tumours (labelled with a biotinylated monoclonal antibody to HER-2/neu) obtained before administration of the contrast agent (avidin-GdDTPA conjugate) and at 1 h, 8 h after contrast. Arrows show enhanced signal from the tumour at the 8 h time point for the HER-2/neu expressing NT-5 tumour [1].

weighted imaging exploits reporter probes for monitoring haemodynamic status. Magnetic resonance spectroscopy utilises the differential imaging spectra obtained from the molecular composition of the tissue being investigated. MRI has been applied in imaging of xenograft animal tumour models for detection of HER-2/neu receptors (Fig. 3), the characterisation of tumour neovascularisation [45] and monitoring T-cell recruitment [29]. Kircher exploited the use of additional chemicals in tandem with magnetic contrast agents when he used highly derivatised cross linked iron oxide (CLIO-HD) to highlight T-lymphocytes in his xenograft model [29]. Similarly super paramagnetic iron oxide (SPIO) has been used as a molecular...
Table 4

<table>
<thead>
<tr>
<th>Authors</th>
<th>Probe/contrast agent</th>
<th>Target tissue/cells</th>
<th>Animal model</th>
<th>Instruments and software</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bos et al., 2004 [7]</td>
<td>SPIO</td>
<td>Rat mesenchymal stem cell (MSC)</td>
<td>Lewis 1A rats</td>
<td>1.5-T clinical unit (Gyroscan Interia; Philips, Best, the Netherlands)</td>
<td>Tracking intravascularly administered</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPION-labeled MSCs in kidney and liver</td>
<td></td>
</tr>
<tr>
<td>Preda et al., 2004 [45]</td>
<td>B22956/1 Protein binding contrast agent</td>
<td>MDA-MB-435 breast tumour</td>
<td>Orthotopic xenograft model in female athymic rats</td>
<td>2 T Bruker Omega CSI-II (Bruker Instruments, Fremont, CA)</td>
<td>(1) Detection of tumour microvessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sun SPARC 10 workstation Image processor (Sun Microsystems, Mountain View, CA), Image analysis programme (MRVision Co., Menlo Park, CA)</td>
<td>(2) Monitoring of antiangiogenic therapy</td>
</tr>
<tr>
<td>Winter et al., 2003 [63]</td>
<td>Paramagnetic nanoparticle</td>
<td>Vx-2 Rabbit tumour</td>
<td>New Zealand white rabbit</td>
<td>1.5 T scanner (NT Interia with Master Gradients, Philips Medical Systems, Best, Netherlands)</td>
<td>Detection of early tumour angiogenesis by targeting (\alpha_v/\beta_3) integrin</td>
</tr>
<tr>
<td>Kircher et al., 2003 [29]</td>
<td>CD8+ T lymphocytes labeled with CLIO-HD</td>
<td>B16-OVA melanoma cell line</td>
<td>Xenograft model in female C57Bl/6 mice</td>
<td>8.5T scanner (Bruker DRX 360)</td>
<td>Monitoring T-cell recruitment in tumour</td>
</tr>
</tbody>
</table>

T – tesla (unit of magnetic flux density), CLIO-HD – highly derivatised crosslinked iron oxide, SPIO – superparamagnetic iron oxide.

Recently, developments in animal MRI have focused on the development of new contrast agents that increase sensitivity and specificity. Contrast agents can be classified as non-specific, targeted and smart probes [8]. Non-specific probes such as gadolinium chelates show a non-specifically distributed pattern, and are used to measure tissue perfusion and vascular permeability. Targeted probes such as gadolinium labelled avidin and annexin V-suparamagnetic iron oxide nanoparticles are designed to specifically bind to ligands such as peptides and antibodies. In one study, avidin conjugated gadolinium targeted the biotinylated Her2/neu receptor (Fig. 3, Table 4). Similarly, annexin V-suparamagnetic iron oxide nanoparticles were used to detect apoptotic cells. The principle underlying the latter is that apoptotic cells expose phosphatidylserine, which has an affinity for annexin, on their outer membranes [50]. Smart probes tag a specific ligand similar to targeted agents, but differ in that the probe signal changes upon interaction with the specific ligand.

MRI has advantages in that it has a higher resolution, which falls within a micrometer range, compared to...
Fig. 4. (A) Whole-body fluorescence imaging of 2 weeks post-surgical implanted orthotopic PC3-DsRed primary prostate tumour (arrowhead) and metastasis in nude mice (arrows). (B) Image of the same animal 4 weeks later showing progressive tumour growth (arrow head) and extension of metastases (arrows) [66].

radionuclides and optical probes in millimetres. MRI is also attractive because of its low toxicity and the absence of ionising radiation. In certain applications, MRI can simultaneously extract physiological, molecular and anatomical information. However, a disadvantage of MRI is that it is less sensitive than radionuclide or optical imaging technique.

3.2. Optical imaging

This technique employs quantitative light emission i.e. photons to obtain measurements of relevant biological parameters, including proteins and nucleic acids within individual living cells. Further advancement comes through the development of new targeted bioluminescence probes, near-infrared fluorochromes and red fluorescent proteins [59]. To detect low levels of light or photons, a very sensitive charge coupled device (CCD) detector is used [23]. The CCD detector is silicon-based and is capable of detecting light from the visible and to the near-infrared range (NIR). This imaging modality produces excellent data from organs and structures close to the skin surface in small animals but, difficulties are encountered in deeper organs, due to light absorption in tissues and the ability to detect low photon emission through tissues. There are two main forms of optical imaging, namely fluorescence imaging (FLI) and bioluminescence (BLI).

3.2.1. Fluorescence imaging

Visible light (395 to 600 nm) is used to excite fluorescence within the subject and a camera or fluorescent microscopy system detects the emitted light from the region of interest within the subject. The commonly used strategy is to fluorescently tag the cells, tissue or molecules under investigation with substances known to fluoresce. In the recent past, a popular choice has been the green fluorescent protein (GFP) which is derived from jellyfish *Aequorea victoria*. The wild-type GFP emits light at 509 nm, while its variant EGFP has a longer emitting wavelength and is 35-fold brighter [27]. Another currently popular fluorescent protein is the red fluorescence protein (RFP), DsRed. DsRed2 is a faster maturing, more soluble variant of reef coral protein from the *Discosoma* species which allows more rapid appearance of red fluorescence together with a reduced tendency for aggregation. It has a tetrameric structure and a maximum excitation wavelength of 563 nm and maximum emission wavelength of 582 nm. Newer fluorescent probes developed from a genetic modification of RFP such as mBanana, tdTomato, mTangerine, mStrawberry and mCherry with longer emission wavelength and greater stability are now available [52].

A distinctive advantage over BLI is that FLI does not require administration of a substrate for visualisation. This overcomes the problem of potential difficulty in intravenous access in small animals. Fluorochromes that emit light of wavelengths greater than 600 nm should be used so that the absorbance by surrounding tissue is minimised and to ensure that background and autofluorescence can be distinguished [56]. Hence, using NIR fluorochromes maximises tissue penetration and minimises autofluorescence [60]. This is attributable to the lower absorption coefficients of water and haemoglobin, which are the major absorbers in tissues, at the NIR spectrum. Several applications have exploited the NIR range [31], e.g. Cy5.5 has been used to image EGF in breast tumours [28]. In addition, Quantum Dots (QD) which are nano-sized molecular probes that have long-term stability and fluoresce brightly up to NIR spectrum upon excitation, have been developed for imaging [2]. Yang et al. [66] has successfully employed DsRed2 shown in Fig. 4, which has
a higher emission wavelength, to map tumour growth and metastases.

A further development to fluorescence imaging is Fluorescence Molecular Tomography (FMT). FMT employs a continuous pulse light from different sources to excite the fluorochrome label and multiple detectors arranged spatially analogous to the set up in CT or MR scanners [36, 37]. Computation generates a three-dimensional image. The resulting images have a resolution of 1–2 mm, and the fluorochrome detection threshold is in the nanomolar range.

3.2.2. Bioluminescence imaging

The main difference between BLI and FLI is that light emission in BLI does not require excitation of the reporter. Light emission originates from an exergonic catalysis reaction of the substrate which releases photons of visible light [62]. One common approach used in animal models is transfection of one of the luciferase family of photo-proteins, that can be isolated either from the sea-pancy (Renilla reniformis) or from the North American firefly (Photinus pyralis), into the tumour cells prior to their inoculation into animals. Further the expression of luciferase can be controlled so that it is expressed only when required or so that it is only expressed when a gene of interest is being transcribed. The luciferase protein can catalyse luciferin (Firefly luciferase) and coelenterazine (Renilla luciferase) following their delivery to the animal, usually through tail vein injection just prior to BLI (Fig. 5). Cells expressing luciferase can be easily identified through their emission of light in the range from 400 to 620 nm [22]. The use of BLI in dynamic in vivo imaging was validated in a neutropenic mouse model in which antimicrobial treatment applications were monitored. This technology has become a very valuable tool which has been employed to dynamically monitor tumour growth or transcriptional activity in living animals as shown in Table 6.

The main advantage of BLI over FLI is its capability to detect very low levels of light signal because there

Table 5

<table>
<thead>
<tr>
<th>Authors</th>
<th>Probe/contrast agent</th>
<th>Target tissue/cells</th>
<th>Animal model</th>
<th>Instruments and software</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang et al., 2005</td>
<td>DsRed2</td>
<td>PC-3 human prostate</td>
<td>Male nude mice</td>
<td>Leica LZ12, 50W mercury lamp CCD camera (C5810, Hamamatsu Photonics)</td>
<td>Monitoring of tumour growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Image Pro Plus v4.0 (Media Cybernetics, SilverSpring, MD)</td>
<td></td>
</tr>
<tr>
<td>Yang et al., 2003</td>
<td>DsRed2 RFP expressing B16F0 melanoma, MMT060562 mammary, Dunning and PC-3 prostate and HCT-116 colon tumours</td>
<td>Nude C57/B6-GFP mice with subcutaneous melanoma/orthotopic breast/orthotopic prostate/orthotopic colon tumours</td>
<td>Nude C57/B6-GFP mice with subcutaneous melanoma/orthotopic breast/orthotopic prostate/orthotopic colon tumours</td>
<td>Leica LZ12, 50W mercury lamp CCD camera (C5810, Hamamatsu Photonics)</td>
<td>Monitoring of tumour growth and metastatic progression</td>
</tr>
<tr>
<td>Ke et al., 2003</td>
<td>Cy5.5</td>
<td>Human mammary MDA-MB-468 (EGFr+) and MDA-MB-435 (EGFr−) cancer cells</td>
<td>Female athymic nude mice</td>
<td>Image intensifier (model FS9910C; ITT Night Vision, Roanoke, VA) CCD camera (CH350, Photometrics, Tucson, AZ) V++ software (Digital Optics, Auckland) and Matlab software</td>
<td>Monitoring of EGFR targeted therapy</td>
</tr>
<tr>
<td>Schmitt et al., 2002</td>
<td>GFP</td>
<td>Lymphoma cells</td>
<td>Lymphoma model in transgenic mice</td>
<td>Leica LZ12, 50 W mercury lamp CCD camera (C5810, Hamamatsu Photonics)</td>
<td>Monitoring of the effects of genotype on therapeutic efficacy</td>
</tr>
<tr>
<td>Peyruchaud et al., 2001</td>
<td>GFP</td>
<td>MDA-MB-231 human breast carcinoma and metastases model in female nude Balb/c mice</td>
<td>Fluorescence scanning system (Fluorimager; Molecular Dynamics, Sunnyvale, CA, USA)</td>
<td>Detection of bone metastasis</td>
<td></td>
</tr>
</tbody>
</table>

RFP – Red fluorescent protein.
is virtually no background light noise. In FLI, the external light source required for fluorochrome excitation could also generate background autofluorescence from animal tissues (Fig. 5).

There are, however, some limitations in BLI. Firstly, light transmission efficiency is dependent on the tissue type being assessed. Highly vascular organ structures contain oxyhaemoglobin and deoxyhaemoglobin that absorb transmitted light which results in about a ten-fold reduction of the bioluminescence signal for every centimetre of tissue depth [16]. Secondly, because the catalytic reaction that generates bioluminescence is time- and enzyme-dependent, optimisation efforts are needed to determine the window period for optimum image capture. Comparatively, FLI may be more convenient and easier to capture images at multiple time-points, since the animal does not require intravenous administration of substrate.

Table 6
Summary of Bioluminescence Imaging application and instrumentation

<table>
<thead>
<tr>
<th>Authors</th>
<th>Probe</th>
<th>Target tissue/cells</th>
<th>Animal model</th>
<th>Instruments and software</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szentirmai et al., 2006 [53]</td>
<td>Firefly luciferase</td>
<td>U87MG human glioma</td>
<td>Xenograft tumour model in nude mice</td>
<td>In Vivo Imaging System IVISR (Xenogen Corp, Alameda, CA), Living Image® software (Xenogen Corp, CA)</td>
<td>(1) Monitoring of tumour growth (2) Monitoring therapeutic response to adenoviruses encoding antiangiogenic soluble vascular endothelial growth factor</td>
</tr>
<tr>
<td>Massoud et al., 2004 [34]</td>
<td>Split synthetic renilla luciferase probes</td>
<td>293T human embryonic kidney tumour cells protein-protein interactions</td>
<td>Nude mice</td>
<td>In Vivo Imaging System IVIS® (Xenogen Corp, Alameda, CA), Living Image® software (Xenogen Corp, CA)</td>
<td>Screening for homodimeric protein–protein interactions</td>
</tr>
<tr>
<td>Jenkins et al., 2003 [25]</td>
<td>Firefly luciferase</td>
<td>PC-3M (prostate) A549 (lung) HT-29 (colon)</td>
<td>Xenograft tumour models of prostate lung and colon in male SCID mice</td>
<td>In Vivo Imaging System IVIS® (Xenogen Corp, Alameda, CA), Living Image® software (Xenogen Corp, CA)</td>
<td>(1) Monitoring of tumour growth and metastasis (2) Monitoring of therapeutic response to mitomycin c and SFU</td>
</tr>
<tr>
<td>Pichler et al., 2003 [42]</td>
<td>Renilla luciferase</td>
<td>Human epidermoid carcinoma KB-1 cells and colchicine-selected KB8-5-11 cells</td>
<td>Male nude mice</td>
<td>In Vivo Imaging System IVIS® (Xenogen Corp, Alameda, CA), Living Image® software (Xenogen Corp, CA)</td>
<td>Screening for multidrug resistance MDR1 P-glycoprotein</td>
</tr>
<tr>
<td>Rocchetta et al., 2001 [48]</td>
<td>lux, bacterium-based bioluminescence system from Photuris luminescens E. coli EC14</td>
<td>Neutropenic mouse thigh model</td>
<td>In Vivo Imaging System IVIS® (Xenogen Corp, Alameda, CA), Living Image® software (Xenogen Corp, CA)</td>
<td>Monitoring of antimicrobial therapy</td>
<td></td>
</tr>
</tbody>
</table>
3.3. Multimodality imaging

New ongoing research is now focusing on amalgamating image modalities. The combination of the various techniques offers a greater quality of information obtained. Unique opportunities to define more specifically the localisation of biological processes, to quantify biological activity and to characterise novel biomarkers are now possible. For example, the development of microPET/CT offers high anatomical resolution with functional information, resulting in a bimodal image [55,56]; and the development of Optical PET (OPET) detectors that can simultaneously capture PET and bioluminescence images [46].

Image co-registration is a term which describes the spatial combination of two images acquired by separate imaging modalities. The quantitative accuracy of the generated image is dependent on the accuracy of the image co-registration technique. This technique improves quantitative localisation of a molecular probe in a more detailed anatomical resolution [67]. Several sophisticated software techniques are available to co-register related intermodality images. In addition, hardware devices including a small animal imaging chamber designed to reproducibly mount on separate microCT and microPET scanners are now available [14]. Table 7 demonstrates several current applications of multimodal imaging including monitoring and detection of tumour growth and monitoring transcriptional activity.

4. Animal concerns in bio-imaging

One important aspect to consider in choosing and using the small animal imaging modality is the welfare of the animal. Several issues warrant consideration such as difficult vascular access to obtain blood samples, the small size of the animals, animal anaesthesia, optimal temperature control and exposure to radiation.

For most in vivo studies, anaesthesia is required to immobilise and to occasionally carry out invasive procedures. The anaesthesia should be easy to administer and of sufficient anaesthetic duration and depth for completion of experiments and imaging. Anaesthesia...
sia has been induced and maintained effectively via subcutaneous, intramuscular, intravenous and inhalant routes. Depending on the anaesthetic protocol and duration of anaesthesia, the metabolic and physical effects can vary in different animals such as hepatic toxicity, hypercapnia, hypothermia, hypoxia and acidosis.

In bio-functional imaging studies such as, distribution or metabolism of a therapy, alteration in blood flow and changes in organ function, anaesthesia can affect the cardio-respiratory and central nervous system which potentially introduces unwanted biases [30]. Preliminary pilot studies are advised to optimise anaesthetic protocols to the specific needs of the animal [15].

Because small animals tend to have a large surface area-to-body-mass ratio and rapid body metabolism, they are more prone to dehydration and heat loss. Hypothermia has been documented in rodents after brief 10–15 minute procedures [2,18]. Attempts to provide warmth or insulation and to restore hydration are imperative for wellbeing. Heating devices such as warm-water blankets, thermal heating pads, heated platform, heat lamps and warm air blowers have been used for animals. On the other hand, provision of warm fluid parenterally and humidified gases can be carried out to prevent dehydration. Modalities such as CT and PET that use radioactive probes or involve radiation exposure to the animal should comply with the maximal radiation dosage. For example, in rats PET tracer doses range from 0.5 to 2.0 mCi and in mice ranges from 50–200 µCi.

5. Conclusion

The challenge remains to develop an instrument capable of imaging a small body volume in three dimensions using a low amount of molecular probe; providing spatial resolution that is sufficient to analyse meaningful anatomical and functional data; detecting and locating sensitively, specifically and accurately; and obtaining an image in a short capture time [33, 60]. Presently, most researchers employ CT imaging for bone-related studies because of its high anatomical resolution and bone image contrast. MRI is exploited for its excellent spatial resolution and good soft-tissue/organ image contrast. Bioluminescence imaging is often employed for assessing therapeutic response because of its excellent sensitivity whilst fluorescence imaging facilitates tumour growth monitoring because of its quick and convenient multiple time-point image capture. PET has high sensitivity and permits accurate quantification of molecular target detection because γ-rays are not attenuated as they pass through tissue. SPECT, a distinct nuclear medicine modality, is cheaper than PET but has a slightly lower sensitivity. The multi-modality techniques which will simplify localisation of imaging are rapidly evolving.

The rapid development in biotechnology has resulted in sophisticated noninvasive in vivo imaging technologies that can be used to screen animals with distinct genotypes. These advances concomitant with innovative molecular techniques are facilitating drug target validation and evaluation of therapeutic efficacy. Inevitable exploitation and expansion in this field will test many hypotheses on the road towards our goals of greater understanding of the carcinogenic process and cancer therapies.

Acknowledgements

We would like to acknowledge the funding by DHSS Research and Development Office, Mason’s Medical Foundation and SRIF Queens University Belfast. We also thank all the authors and publishers who have kindly contributed to the reprinting of figures used in this review article. We also thank Miss Rachel Yew for her support and help in the preparations of the images.

References

